Glycine residues provide flexibility for enzyme active sites.

نویسندگان

  • B X Yan
  • Y Q Sun
چکیده

The high resolution refined structures of 23 enzymes were analyzed to determine the properties of amino acids involved in active site regions. These regions were found to be rich in G-X-Y or Y-X-G oligopeptides, where X and Y are polar and non-polar residues, respectively, that are small and with low polarity. Other regions of the enzyme molecules have significantly fewer of these sequences. These features suggest that glycine residues may provide flexibility necessary for enzyme active sites to change conformation, and the G-X-Y or Y-X-G oligopeptides may be a motif for the formation of enzyme active sites.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The pepsin residue glycine-76 contributes to active-site loop flexibility and participates in catalysis.

Glycine residues are known to contribute to conformational flexibility of polypeptide chains, and have been found to contribute to flexibility of some loops associated with enzymic catalysis. A comparison of porcine pepsin in zymogen, mature and inhibited forms revealed that a loop (a flap), consisting of residues 71--80, located near the active site changed its position upon substrate binding....

متن کامل

Automatic classification of highly related Malate Dehydrogenase and L-Lactate Dehydrogenase based on 3D-pattern of active sites

Accurate protein function prediction is an important subject in bioinformatics, especially wheresequentially and structurally similar proteins have different functions. Malate dehydrogenaseand L-lactate dehydrogenase are two evolutionary related enzymes, which exist in a widevariety of organisms. These enzymes are sequentially and structurally similar and sharecommon active site residues, spati...

متن کامل

Activation gating of hERG potassium channels: S6 glycines are not required as gating hinges.

The opening of ion channels is proposed to arise from bending of the pore inner helices that enables them to pivot away from the central axis creating a cytosolic opening for ion diffusion. The flexibility of the inner helices is suggested to occur either at a conserved glycine located adjacent to the selectivity filter (glycine gating hinge) and/or at a second site occupied by glycine or proli...

متن کامل

Flexibility analysis of enzyme active sites by crystallographic temperature factors.

Protein flexibility is inherent to protein structural behavior. Experimental evidence for protein flexibility is extensive both in solution and in the solid state. A major question is whether the flexibility observed in enzymes is simply an inherent property of proteins that must always be borne in mind or is essential for catalysis or substrate binding. The temperature factors or B-values, as ...

متن کامل

A Study on the Electronic and Structural Properties of C12X8 (X = C, B) and Their Interaction with Glycine with Potentially Drug Delivery Vessels

In this paper, the structural properties of C20 and C12B8 fullerene interacting with glycine based onthree active sites of glycine and one C atom or one B atom in C12B8 were analyzed through thedensity functional theory. It was found out that the binding of glycine to C12B8 generated a complex.Our results were extremely relevant in order to identify the potential applications of functionalizedC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 272 6  شماره 

صفحات  -

تاریخ انتشار 1997